# Crystal structures of Co<sub>1-x</sub>Fe<sub>x</sub>TiSb compounds

PAUL SCHERRER INSTITUT G. Schuck a, J. L. Gavilano a, D. Sheptyakov a, J. Schefer a, H. R. Ott b and Z. Fisk c

<sup>a</sup> Laboratory for Neutron Scattering ETH Zürich & PSI, Villigen, Switzerland, <sup>b</sup> ETH Zürich, Switzerland, <sup>c</sup> NHMFL-FSU, Tallahassee FL 32306, USA

#### Half-Heusler compounds with unusual electronic properties

CoTiSb belongs to the family of half-Heusler compounds [1] which have the general form XYZ, with X and Y transition metals and Z an sp electron metal.

These materials are thought to have the MaAgAs type structure, derived from the general Heusler structure (X2YZ) by leaving every other X site vacant.

The latter is thought to lead to unusual electronic properties, including the so-called half-metallic ferromagnetism with a 100% polarized electronic band responsible for the metallic conduction [2].

In addition, the ferromagnetism in this series has been claimed to be associated with a metal to semiconductor transition [3].

All this makes the half metallic ferromagnets of this family good candidates for potential applications involving spin-polarized transport (spintronics) [4].

The Co Fe<sub>1-x</sub>TiSb samples for this investigation (x = 0, x = 0.015 and x = 0.05) have very different transport properties what is shown in Figure 1.





**Figure 2**: Representation of the structure of Half Heusler compounds, F -4 3 m. X, Y and Z represent the coordinates of Co, Ti and Sb, respectively, in the ideal structure.

According to electronic band structure calculations [4], should be a paramagnetic semiconductor with an energy gap of the order of 1 eV. However, the situation is complicated because the results are very sensitive to which elements occupy the X, Y and Z positions (Fig. 2) in the structure [5].

For instance, CoTiSb ought to be a nonmagnetic semimetal, and TiCoSb a ferromagnetic metal. Although this claim obtained some support from measurements on a polycrystalline sample of CoTiSb, it was seriously questioned by recent work on single crystals of CoTiSb [6,7]. In fact none of the above possibilities matched the experimental results.

In addition it was found that replacing a small amount (5%) of Co by Fe strongly reduces the low temperature electrical conductivity, by nearly 2 orders of magnitude.

This clearly shows that the sample is close to a metal-semiconductor instability. In addition the properties of CoTiSb are sensitive to details of the annealing of the sample.

### SHELXL refinement from BM1A SNBL ESRF CCD X-ray data (T = 100 K)

| Co <sub>1-x</sub> Fe <sub>x</sub> TiSb; x = 0; λ = 0.7173                                                  |                |  |
|------------------------------------------------------------------------------------------------------------|----------------|--|
| Space group; Z                                                                                             | F-43m; 4       |  |
| a (Å)                                                                                                      | 5.8919 (5)     |  |
| Reflections measured                                                                                       | 3123           |  |
| Reflections used                                                                                           | 108            |  |
| R <sub>int</sub> ; S                                                                                       | 0.0386; 1.191  |  |
| R; R <sub>w</sub>                                                                                          | 0.0175; 0.0460 |  |
| Largest Δρ (x,y,z)                                                                                         |                |  |
| max; min (e/Å <sup>3</sup> )                                                                               | 1.003 ; -1.619 |  |
| Extinction coefficient                                                                                     | 0.0068(3)      |  |
| Flack parameter                                                                                            | 0.2(2)         |  |
| <b>Co</b> ( <sup>1</sup> / <sub>4</sub> , <sup>1</sup> / <sub>4</sub> , <sup>1</sup> / <sub>4</sub> ) Uiso | 0.00558(7)     |  |
| <b>Ti</b> ( <sup>1</sup> / <sub>2</sub> , <sup>1</sup> / <sub>2</sub> , <sup>1</sup> / <sub>2</sub> ) Uiso | 0.00570(8)     |  |
| <b>Sb</b> (0,0,0) Uiso                                                                                     | 0.00635(3)     |  |

Co<sub>1-x</sub>Fe<sub>x</sub>TiSb; x = 0.015; λ = 0.7173 F-43m<sup>·</sup> 4 Space group; Z 5.8933 (6) a (Å) Reflections measured 3638 Reflections used 117 0.0429; 1.179 R<sub>int</sub>; S R; R<sub>w</sub> 0.0240; 0.0560 Largest  $\Delta \rho$  (x,y,z) max; min (e/Å3) 2.828; -2.162 Extinction coefficient 0.1323(18) 0.25(19) Flack parameter **Co** (1/4, 1/4, 1/4) Uiso 0.00508(8) 0.983(4) Co Occupancy Fe (1/4,1/4,1/4) Uiso 0.005 FIX Fe Occupancy 0.019(4) **Ti** (1/2,1/2,1/2) Uiso **Sb** (0,0,0) Uiso 0.00486(3)

| Co <sub>1-x</sub> Fe <sub>x</sub> TiSb; x = 0.05; λ = 0.721839                                             |                |  |
|------------------------------------------------------------------------------------------------------------|----------------|--|
| Space group; Z                                                                                             | F-43m; 4       |  |
| a (Å)                                                                                                      | 5.8946 (7)     |  |
| Reflections measured                                                                                       | 5912           |  |
| Reflections used                                                                                           | 101            |  |
| R <sub>int</sub> ; S                                                                                       | 0.0572; 1.119  |  |
| R; R <sub>w</sub>                                                                                          | 0.0138; 0.0342 |  |
| Largest Δρ (x,y,z)                                                                                         |                |  |
| max; min (e/ų)                                                                                             | 0.671; -1.473  |  |
| Extinction coefficient                                                                                     | 0.1171(9)      |  |
| Flack parameter                                                                                            | 0.21(16)       |  |
| <b>Co</b> ( <sup>1</sup> / <sub>4</sub> , <sup>1</sup> / <sub>4</sub> , <sup>1</sup> / <sub>4</sub> ) Uiso | 0.00555(8)     |  |
| Co Occupancy                                                                                               | 0.952(3)       |  |
| <b>Fe</b> ( <sup>1</sup> / <sub>4</sub> , <sup>1</sup> / <sub>4</sub> , <sup>1</sup> / <sub>4</sub> ) Uiso | 0.0056(15)     |  |
| Fe Occupancy                                                                                               | 0.055(3)       |  |
| <b>Ti</b> (1/2,1/2,1/2) Uiso                                                                               | 0.00584(7)     |  |
| <b>Sb</b> (0,0,0) Uiso                                                                                     | 0.00417(2)     |  |

All refinements: No constraints/restraints No correlation matrix elements larger than 0.500

## JANA 2006 joint Neutron TriCS PSI / X-ray data SNBL refinement; x = 0.05

For all three samples (x = 0, x = 0.015 and x = 0.05) neutron single crystal measurements on TriCS (PSI) and X-ray single crystal measurements on BM1A beamline (SNBL/ ESRF) each at 100 K has been carried out. It is planned to carry out joint refinement (neutronand the X-ray) on all three samples

Presented in the table on the right are preliminary refinement results on the joint refinement on the neutron- and the X-ray datasets with x = 0.05, with a new beta-version of the JANA2006 software [8].

|                               | X-ray (SNBL)                                     | Neutron (TriCS) | Refinem                                         |
|-------------------------------|--------------------------------------------------|-----------------|-------------------------------------------------|
| λ (Å)                         | 0.721839                                         | 1.1807          | _Restric: Oc                                    |
| Extinction giso               | 0.206374                                         | 0.003752        | Equation :                                      |
| Reflections                   | 1263                                             | 447 + 15        | Go                                              |
| GOF (obs) single              | 0.0171                                           | 0.0171          | 0.98                                            |
| GOF (obs) joint               | 0.0171                                           |                 | scale[Neut                                      |
| R (obs) single                | 0.0355                                           | 0.0276          | •                                               |
| R (obs) joint                 | 0.0351                                           |                 | <b>Co</b> (1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4) |
| R <sub>w</sub> (obs) single   | 0.0434                                           | 0.0319          | Co Occup                                        |
| R <sub>w</sub> (obs) joint    | 0.0345                                           |                 | <b>Fe</b> (1/4,1/4,1                            |
| Maximum change/s.u.           | for giso (Neutron) 0.0268                        |                 | Fe Occupa                                       |
| Largest $\Delta \rho$ (x,y,z) |                                                  |                 | <b>Ti</b> (1/2,1/2,1/                           |
| max; min                      | 0.276 e/Å <sup>3</sup> ; -0.306 e/Å <sup>3</sup> |                 | <b>Sb</b> (0,0,0)                               |

**Refinement conditions:** Restric: Occupancy Co + Fe = 1 Equation : Uiso[Fe] = Uiso[Co]

#### **Correlations:** 0.98 correlation for:

| scale[Neutrons]/giso[Neutrons] |            |  |
|--------------------------------|------------|--|
| <b>Co</b> (1/4,1/4,1/4) Uiso   | -0.0047(2) |  |
| Co Occupancy                   | 0.944(3)   |  |
| <b>Fe</b> (1/4, 1/4, 1/4) Uiso | -0.0047    |  |
| Fe Occupancy                   | 0.0557     |  |
| <b>Ti</b> (1/2,1/2,1/2) Uiso   | -0.0052(3) |  |
| <b>Sb</b> (0.0.0) Uiso         | -0.0047(2) |  |

Reference: <sup>(1)</sup>M. Terada, K. Endo, Y. Fujita, and R. Kumura, J. Phys. Soc. Jpn. 32, 91 (1972); <sup>(2)</sup> R. A. De Groot, F. M. Muller, P.G. Van Engen, and K.H. Buschow, Phys. Rev. Lett., 50, 2024 (1983); <sup>(3)</sup>M.A. Kouacou, J. Pierre, and R.V. Skolozdra, J. Phys.: Condens. Matter 7, 7373 (1995); <sup>(4)</sup>B.R.K. Nanda and I. Dasgupta, J. Phys. Condens. Matter 17, 5037 (2005); <sup>(6)</sup>S. Ishida, T. Masaki, S. Fujii, and S. Asano, Physica B Vol. 239, 163 (1997); <sup>(6)</sup>L. Degiorgi, A. V. Sologubenko, H. R. Ott, F. Drymiotis and Z. Fisk, Phys. Rev. B, 65, 41101 (2001); <sup>(7)</sup>H.R. Ott, Physica B, 318, 77 (2002); <sup>(6)</sup>V. Petricek et al., JANA, Inst. of Physics, AVCR, Praha, Czech. Rep. (2000).