Crystal structures of two rubrene derivatives

PAUL SCHERRER INSTITUT

Götz Schuck ^a, Simon Haas ^b, Ulrich Berens ^c and Hans-Jörg Kirner ^c ^a Laboratory for Neutron Scattering ETH Zürich & PSI, Villigen, Switzerland, ^b ETH Zürich, Switzerland, ^c Ciba Specialty Chemistry Inc., 4002 Basel, Switzerland

Single crystal structure refinement of 5,11-BTBR (A) and 5,12-BTBR

5,11-bis-(4-tert-butyl-phenyl)-6,12-diphenylnaphthacene (5,11-BTBR) is a derivate of rubrene with two polymorphs (A and B) where t-butyl sidegroups are added.

5,11-BTBR Polymorph A has a structure drastically different from the packing of unsubstituted rubrene with enhanced backbone-backbone spacing between two molecules [2]. Remarkably, the naphthacene backbone of the molecules is significantly twisted in polymorph A, with a twist angle of 43° between the two opposite C-C bonds at both ends of the backbone. The resulting backbone-backbone distances are not shorter than 4.36 Å, which is commonly expected to drastically reduce the π - π * overlap.

In the case of 5,12-bis-(4-tert-butyl-phenyl)-6,11diphenyl-naphthacene (5,12-BTBR) [3], the inplane arrangement of the molecules is very similar to that of rubrene [4], with even shorter distances between the naphthacene backbones (3.62 Å compared to 3.75 Å). However, the addition of the t-butyl groups increases the inter-layer spacing by 31%. Interestingly, it leaves the backbone almost perfectly planar.

Above: Perspective views of the structures of 5,11-BTBR (polymorph A, left) [2], rubrene at 293 K (center) [4], and 5,12-BTBR [3] (similar to 5,11-BTBR polymorph B, right).

5,11-BTBR (A)	5,12-BTBR
Tetracene backbone	

SHELXL refinement from Siemens SMART CCD data

5,11-BTBR (A); C ₅₀ H ₄₄ ; M _r = 644.85		
[2]		
Space group	Monoclinic,	
	P2 ₁ /c	
a,b,c (Å); β (°)	23.527 (3)	
	9.0277 (10)	
	17.764 (2)	
	95.928 (4)	
V (Å ³)	3752.8 (8)	
Exposure (sec)	5	
Z	4	
Reflections	31129	
Unique reflec.	6626	
Reflections with $I > 2\sigma(I)$	3478	
Parameters; Ratio	536; 12.4	
Mean σ(C-C) (Å)	0.007	
R _{int}	0.100	
R	0.098	
wR	0.169	
S	1.11	

5 12 PTPP: C H : M = 644.00		
$5, 12-BTBR, C_{50}\Pi_{44}, M_r = 644.90$ [3]		
Space group	Orthorhombic,	
	Pnma	
a,b,c (Å)	14.158 (2)	
	35.390 (5)	
	7.2215 (11)	
	. ,	
V (Å ³)	3618.4 (9)	
Exposure (sec)	5	
Z	4	
Reflections	28135	
Unique reflec.	3446	
Reflections with $I > 2\sigma(I)$	2208	
Parameters; Ratio	282; 12.2	
Mean σ(C-C) (Å)	0.005	
R _{int}	0.0298	
R	0.074	
"R	0.207	
S	1.15	

The structure of polymorph 5,11-BTBR (B) could not be solved so far, as the material seems to exclusively grow as ultrathin platelets. From measurements of the d-spacing perpendicular to the extended crystal surface [1], a structure closely related to the one found for a constitutional isomer, 5,12-bis-(4-tert-butyl-phenyl)-6,11-diphenyl-naphthacene was assumed for polymorph B.

Charge mobility vs. intermolecular π -orbital overlap

The electric transport properties of the two polymorphs are completely different: in polymorph B the in-plane hole mobility of 12 cm²/Vs measured on single crystal FETs is just as high as in rubrene crystals, whereas polymorph A does not show any measurable field-effect [1].

Above: Intermolecular π -orbital overlap. Structural details: just naphthacene backbones are shown. Perspective views of 5,11-BTBR (polymorph A, left), rubrene at 293 K (center) [4], and 5,12-BTBR (similar to 5,11-BTBR polymorph B, right). Right: charge mobility [1] vs. shortest intermolecular π -orbital overlap [2,3,4]; the shortest intermolecular π -orbital overlap of 5,11-BTBR (B) is represented by C2-C8 of 5,12-BTBR

Reference: [1] Haas, S., Stassen, A. F., Schuck, G., Pernstich, K. P., Gundlach, D. J., Batlogg, B., Berens, U. & Kirner, H. J. (2007). Phys. Rev. B. Accepted. (cond-mat, arXiv:0707.0461); [2] G. Schuck, S. Haas, A. F. Stassen, U. Berens and B. Batlogg, Acta Cryst. (2007). E63, o2894; [3] G. Schuck, S. Haas, A. F. Stassen, H.-J. Kirner and B. Batlogg, Acta Cryst. (2007). E63, o2893; [4] O. D. Jurchescu, A. Meetsma and T. T. M. Palstra, Acta Cryst. (2006). B62, 330-334