

Structural studies of β -pyrochlore RbOs₂O₆

G. Schuck ^{a,b}, J. Karpinski ^b, K. Rogacki ^b, N.D. Zhigadlo ^b, S.M. Kazakov ^{b,c}

^a Laboratory for Neutron Scattering ETHZ & PSI, CH-5232 Villigen PSI, Switzerland ^b Solid State Physics Laboratory, ETH Zürich, Switzerland,^c Department of Chemistry, Moscow State University, Russia

Single crystal growth and superconducting properties of RbOs₂O

Superconducting β -pyrochlore oxide RbOs₂O₆ single crystals has been synthesized by encapsulation techniques (evacuated and sealed quartz ampoule). The ampoule was placed in the preheated furnace at 600 °C, kept for 1 h, cooled down to 400 °C at a rate of 5 °C/h, and finally cooled down to room temperature at a rate of 150 °C/h. As a result, RbOs, O, octahedra shaped single crystals with a size up to 0.3 mm have been grown.

Bulk superconductivity with T = 6.4 K was observed in magnetisation and specific heat measurements. For members of β -pyrochlore AOs₂O₆ family (A = K, Rb, Cs) the transition temperature was found to decrease with increasing the ionic radius of A cation (9.6 K for KOs, Os and 3.3 K for CsOs, Os) [1].

Band structure calculations for KOs₂O₈ show significant instability and anharmonicity of the K ions ("rattling") [2], which seems to be consistent with a rather high anisotropic displacement parameter derived for the K ions from our crystal structure studies [3].

Above: Critical temperature T_c as a function of lattice parameter a for superconducting pyrochlores

Crystal structure of RbOs_O

Detailed single crystal X-ray diffraction studies at room temperature show Bragg peaks that violate $Fd\bar{3}m$ symmetry, like for KOs_2O_6 [3]. With a comparative structure refinement the structure is identified as **non-centrosymmetric** (F43m). Compared to the ideal β -pyrochlore lattice (Fd3m), both Os tetrahedral and O octahedral network exhibit breathing mode like volume changes accompanied by anisotropic character of the Rb channels.

The structure of β -pyrochlore RbOs,O_s has been solved from single crystal X-ray data measured at room temperature (SMART CCD, MoK المربع):

Below: Atomic coordinates and isotropic displacement parameters (U_{iso})

RbOs ₂ O ₆						KOs ₂ O ₆ [3]	a = 10.124(1) Å		
	Site	x	У	z	U _{iso}	U _{iso}	249 unique reflections		
Os	16e	0.8758(1)	х	х	0.0039(1)	0.0005(1)	16 parameters		
Rb1	4c	1/4	1/4	1/4	0.0304(1)	0.063(5)	$R_{\rm c} = 0.021$		
Rb2	4b	1/2	1/2	1/2	0.0375(1)	0.062(4)	wR = 0.039		
01	24f	0.1895(1)	0	0	0.0027(2)	0.005(1)	$R_{} = 0.030$		
02	24g	0.5551(2)	1/4	1/4	0.0190(3)	0.005(1)	$S^{int} = 1.437$		

Below: Anisotropic displacement parameters (ADP)

	RbOs ₂ O ₆								
	Site	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃		
Os	16e	0.0039(1)	0.0039(1)	0.0039(1)	0.0006(1)	-0.0006(1)	0.0006(1)		
Rb1	4c	0.0304(1)	0.0304(1)	0.0304(1)	0	0	0		
Rb2	4b	0.0375(1)	0.0375(1)	0.0375(1)	0	0	0		
01	24f	0.0000(4)	0.0041(2)	0.0041(2)	0.0006(4)	0	0		
02	24a	0.0266(6)	0.0152(3)	0.0152(3)	0.0131(4)	0	0		

Above: Structural details of β -pyrochlore RbOs₂O₆ at room temperature with F43m space group symmetry showing. (left) the O-O interatomic distances in the octahedral network: the length O1–O1 = 2.79 Å is longer and the length O2-O2 = 2.71 Å is shorter than the distance O-O = 2.74 Å calculated for the ideal β -pyrochlore structure (Fd3m); (right) the anisotropic nature of the Rb channels. Interatomic distances O2-Rb1 = 3.14 Å and O1-Rb2 = 3.09 Å are longer and shorter, respectively, compared to the ideal β -pyrochlore structure calculated with Fd3m symmetry (O-Rb = 3.13 Å). Shown is the structure projected along the [-110] direction.

Comparison to KOs,

Below: Selected interatomic distances (Å) (KOs₂O₆ [3]), Δ: length difference (Å): maximal - minimal length (example: [length: K1-O2] - [length: K2-O1] = 0.082 Å).

	RbOs ₂ O ₆	Δ	KOs ₂ O ₆	Δ
Os-01	1.932	0.035	1.920	0.014
Os-02	1.897		1.906	
Os-Os	3.561	0.037	3.548	0.044
Os-Os	3.598		3.592	
A1-02	3.144	0.055	3.141	0.082
A2-01	3.089		3.059	
A-A	4.384	-	4.372	-
01-02	2.665	-	2.653	-
01-01	2.790	0.078	2.819	0.124
02-02	2.713		2.695	

Only the O octahedral network length changes (AOs-O) are stronger for RbOs,O, then for KOs,O,

> Os tetrahedral network length changes $(\Delta Os-Os)$ and the anisotropic character (ARb-O) of the alkali ion channels are weaker for RbOs₂O₂

$$\rightarrow \mathbf{U}_{iso, Pb} / \mathbf{U}_{iso, K} \approx 0.5$$

\rightarrow Less alkali ion "rattling" in RbOs₂O₆

Above: Energy surface for a displacement Δ of alkali ions along [111] direction (band structure calculations) [2].

References

[1] S.M. Kazakov, N.D. Zhigadlo, M. Brühwiler, B. Batlogg, J. Karpinski, cond-mat/0403588 (2004). [2] J. Kuneš, T. Jeong and W.E. Pickett, Phys. Rev. B 70, 174510 (2004).

[3] G.Schuck, S. M. Kazakov, K. Rogacki, N. D. Zhigadlo and J. Karpinski, cond-mat/0601465 (2006).