Eidgenössische Technische Hochschule Zürich

[1] K. Rogacki et al., in preparation.

[2] Y. Kuz'ma et al., Z. Krist. NCS, 218, 159 (2003)

Swiss Federal Institute of Technology Zurich

Structure / properties relationships in doped MgB₂ single crystals

G. Schuck ^a, M. Wörle ^b, N.D. Zhigadlo ^a, K. Rogacki ^a, J. Karpinski ^a ^a Solid State Physics Laboratory, ^b Laboratory of Inorganic Chemistry, ETH Zürich, 8093 Zürich, Switzerland

Pure MgB₂ single crystals at 5K

298K Investigation of possible structural changes in MgB_2 single crystals, which are correlated with superconducting properties (T_c = 39 K), measured with STOE IPDS Imaging Plate at 5 K and 298 K.

- No phase transformation down to 5 K
- No additional reflections or splitting

298 K: 189 (18) reflections; R₁ = 0.033, wR = 0.077

Reconstructed images of zero reciprocal space layer (I = 0); Imaging Plate measurements of pure MgB₂ single crystals at 298 K and 5 K with STOE IPDS; Mo K_{at}; 300 s exposure time; $\Delta \phi = 1^{\circ}$; dd = 150 mm.

5 K: 192 (20) reflections; $R_1 = 0.064$, wR = 0.142 (Bad residual due to He inside Si-sample-tube)

Reconstructed images of reciprocal space layers; CCD measurements of the new Mg-Fe-B compound single crystals with SMART CCD; Mo K_{at} ; 60 s exposure time; $\Delta \phi = 0.3^{\circ}$; dd = 30 mm.